

Agenda

- 9:00 Welcome and Opening Remarks
- 9:05 Introductions
- 9:15 Scenario Planning Results Localized Gaps
- 10:15 Break
- 10:30 Planning Options for Future Water Needs
- 10:45 Adaptive Management
- 11:30 Question and Answer Session
- 11:50 Next Meeting
- 12:00 Adjourn

Introductions

Missouri Planning Scenarios

	Scenario	M&I Demands	Ag Demands	Climate	Water Treatment Level	Supply Constraints	Reservoir Regulations
	1. Business- As-Usual	 Baseline M&I demands Baseline Rural demands 	Med Ag irrigationMed Ag processing	Historical temperaturesHistorical precipitation	Existing water treatment levels	No water supply constraints	 No re-allocation of USACE reservoirs for supply Existing permitting process for new reservoirs
	2. Strong Economy/ High Water Stress	High M&I demandsHigher Rural demands	 High Ag irrigation Med-High Ag processing 	Hotter temperaturesLower rainfall	High increase in water treatment levels	 Interstate diversions out of Missouri River Basin Limitations on GW (select areas) Prolonged supply disruption on River intakes 	 Limited re-allocation of USACE reservoirs for supply Streamlined permitting process for new reservoirs
	3. Substantial Agricultural Expansion	 Baseline M&I demands Baseline Rural demands 	Med Ag irrigationHighest Ag processing	Warmer temperaturesGreater rainfall	 Moderate increase in water treatment levels 	 Interstate diversions out of Missouri River Basin Limitations on GW (select areas) 	 Limited re-allocation of USACE reservoirs for supply Existing permitting process for new reservoirs
	4. Weak Economy/ Low Water Stress	Low M&I demandsBaseline Rural demands	Med Ag irrigationMed Ag processing	Warmer temperaturesGreater rainfall	Existing water treatment levels	No water supply constraints	 No re-allocation of USACE reservoirs for supply Existing permitting process for new reservoirs

Limitations of the Analysis

- Comparisons of supply and demand at the subregional (HUC4) and even watershed (HUC8) scale can miss localized stress and gaps
- Results do not consider in-place infrastructure to move water from one location to another
- Alluvial demands treated as groundwater (but may impose stress to surface water)
- Planned or proposed projects are not considered

Interpreting the Results for Surface Water Identifying Potential Supply Stress Average Conditions

Condition	on Analysis Result		Potential Water Supply Stress	Key
	Monthly	Demand < 50% of Supply for entire year	No Stress	
Average	Monthly	Demand > 50% of Supply for 1 month or more	Low St <mark>ress</mark>	
	Monthly	Demand > Supply for 1 month or more	Higher Stress	

Scenario 1 – Business-As-Usual (Average Conditions)

Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Average Conditions)

Scenario 1 – Business-as-Usual & Scenario 3 – Substantial Agricultural Expansion (Average Conditions)

Scenario 1 — Business-as-Usual & Scenario 4 — Weak Economy/Low Water Stress (Average Conditions)

Subregion Surface Water Result Summary

• Non-Major River Demands – Average Conditions

Potential Water Supply Stress		# of Basins Scenario 1 – Business-As- Usual	# of Basins Scenario 2 — Strong Economy/ High Water Stress	Scenario 2 – Scenario 3 – Strong Substantial Economy/ High Agricultural	
	Demand < 50% of Supply for entire year	3	2	3	3
	Demand > 50% of Supply for 1 month or more	5	2	3	5
	Demand > Supply for 1 month or more	1	5	3	1

Subregion Surface Water Result Summary

Non-Major River Demands – Drought Conditions

Potential Water Supply Stress		# of Basins Scenario 1 – Business-As- Usual	# of Basins Scenario 2 – Strong Economy/ High Agricultural Water Stress # of Basins Scenario 3 – Substantial Agricultural Expansion		# of Basins Scenario 4 – Weak Economy/ Low Water Stress
	Demand < 50% of Supply for entire year	1	1	1	1
	Demand > 50% of Supply for 1 month or more	0	O	O	0
	Demand > Supply for 1 month or more	8	7	8	8

Scenario 1 – Business-As-Usual (Average Conditions)

Surface Water Stress

No Stress

Low Potential Stress

Higher Potential Stress

Number of months exceeding threshold included in the symbol

Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Average Conditions)

Scenario 1 – Business-As-Usual & Scenario 3 – Substantial Agricultural Expansion (Average Conditions)

Scenario 1 – Business-As-Usual & Scenario 4 – Weak Economy/Low Water Stress (Average Conditions)

Scenario 1 – Business-As-Usual (Drought of Record Conditions)

Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Drought of Record Conditions)

Scenario 1 – Business-as-Usual & Scenario 3 – Substantial Agricultural Expansion (Drought of Record Conditions)

Scenario 1 – Business-as-Usual & Scenario 4 – Weak Economy/Low Water Stress (Drought of Record Conditions)

Interpreting the Results for Groundwater Identifying Potential Supply Stress

Condition	Analysis	Current GW Levels	Withdrawals* as a Percent of Recharge	Potential Water Supply Stress	Key
		No Trend	Decrease	No Stress	
		No Trend	Relatively Flat	NO Stress	
Avarage	Annual	No Trend	Increase	L avv Chroso	
Average		Declining	Flat or Decrease	Low Stress	
		Declining	lining Increase		
		Declining	Substantial Increase	Increasing	

^{*} Relative to 2016 withdrawals

Groundwater **Relative** Results – Scenarios 1, 2, 3, and 4 Average Conditions

Subregion Groundwater Result Summary

Average Conditions

				Number of Basins			
	Key	Current GW Levels	Withdrawals* as a Percent of Recharge	Scen. 1 - Business- As-Usual	Scen. 2 - Strong Economy/ High Water Stress	Scen. 3 – Substantial Agricultural Expansion	Scen. 4 - Weak Economy/ Low Water Stress
		No Trend	Decrease	3	1	9	6
		No Trend Declining	Increase Flat or Decrease	4	7	0	3
4		Declining	Increase	2	0	0	0
		Declining	Substantial Increase	0	1	0	0

^{*} Relative to 2016 withdrawals

Groundwater Results for Scenarios 1, 2, 3 and 4 Average Conditions

Scenario 1 – Business-As-Usual

Scenario 2 – Strong Economy/

High Water Stress

Scenario 3 – Substantial

Agricultural Expansion

Scenario 4 – Weak Economy/

Low Water Stress

M&I Options to Meet Future Water Needs

- Additional/expansion of surface storage
- Conveyance
- Wastewater reuse
- Expanded conservation
- Conjunctive use (groundwater/surface water)
- System redundancy (intakes and conveyance)
- Regionalization of water systems
- Enhanced water treatment

Agricultural Options to Meet Future Water Needs

- Additional storage
- Conveyance
- Conjunctive use of surface water and groundwater
- System efficiency (in the Bootheel with furrow irrigation and transition to high value crops)
- Drainage water recycling
- Meeting demand for expanded food processing operations
- Expanded groundwater use for livestock
- Expanded alluvial groundwater use for additional irrigation
- Surface impoundments for livestock in northwest Missouri
- Cropping system management

Steps in Scenario Planning

- 1) Identify major uncertainties that can impact the future
- 2) Select most important uncertainties as "drivers" of scenarios
- 3) Combine uncertainty drivers into scenarios that represent a different possible futures
- 4) Measure impacts of scenarios and assess options to address impacts
- 5) Use an adaptive management framework for continuous reassessment and implementation of options

Use Adaptive Management for Continuous Re-Assessment and Implementation of Options

Adaptive Management

Identified Projects:

- East Locust Creek Reservoir **Project**
- Cameron Pipeline Project
- Southwest Missouri Water Resources
- Missouri American Reservoir **Project**
- Little Otter Creek Reservoir **Project**

Implement "Strong Economy" More New **Strategies**

"Ag Expansion"

Implement Some New Strategies

"Business as Usual"

Stay the Course

"Weak Economy"

Stay the

Course

Now

Missouri Planning Scenarios

	Scenario	M&I Demands	Ag Demands	Climate	Water Treatment Level	Supply Constraints	Reservoir Regulations
	1. Business-As- Usual	Baseline M&I demands	 Med Ag irrigation 	• Historical temperatures	• Existing water treatment levels	 No water supply constraints 	 No re-allocation of USACE reservoirs for supply
		Baseline Rural demands	 Med Ag processing 	• Historical precipitation			• Existing permitting process for new reservoirs
	2. Strong Economy/ High Water Stress	 High M&I demands Higher Rural demands 	High Ag irrigationMed-High Ag processing	Hotter temperaturesLower rainfall	High increase in water treatment levels	 Interstate diversions out of Missouri River Basin Limitations on GW (select areas) Prolonged supply disruption on River intakes 	 Limited re-allocation of USACE reservoirs for supply Streamlined permitting process for new reservoirs
	3. Substantial Agricultural Expansion	Baseline M&I demandsBaseline Rural demands	Med Ag irrigationHighest Ag processing	Warmer temperaturesGreater rainfall	Moderate increase in water treatment levels	 Interstate diversions out of Missouri River Basin Limitations on GW (select areas) 	 Limited re-allocation of USACE reservoirs for supply Existing permitting process for new reservoirs
	4. Weak Economy/ Low Water Stress	Low M&I demandsBaseline Rural demands	Med Ag irrigationMed Ag processing	Warmer temperaturesGreater rainfall	Existing water treatment levels	No water supply constraints	 No re-allocation of USACE reservoirs for supply Existing permitting process for new reservoirs

Adaptive Management Overview & Framework

Adaptive management is a framework that can be used to implement water supply options as the future unfolds, in a structured way to avoid the pitfalls of either under-performance or over-investment.

Terms:

- Risk Triggers uncertainties that can drive the need for new projects, which are tied back to scenario planning
- Outcomes consequences or results of the "risk triggers" occurring
- Options identification of water supply options that can be implemented to mitigate the "outcomes"

M&I Options to Meet Future Water Needs

- Additional/expansion of surface storage
- Conveyance
- Wastewater reuse
- Expanded conservation
- Conjunctive use (groundwater/surface water)
- System redundancy (intakes and conveyance)
- Regionalization of water systems
- Enhanced water treatment

Agricultural Options to Meet Future Water Needs

- Additional storage
- Conveyance
- Conjunctive use of surface water and groundwater
- System efficiency (in the Bootheel with furrow irrigation and transition to high value crops)
- Drainage water recycling
- Meeting demand for expanded food processing operations
- Expanded groundwater use for livestock
- Expanded alluvial groundwater use for additional irrigation
- Surface impoundments for livestock in northwest Missouri
- Cropping system management

Adaptive Management – M&I Risk Triggers

Water Supply Options

- Additional/expansion of surface storage
- Conveyance
- Wastewater reuse
- Expanded conservation
- Conjunctive use (groundwater/surface water)
- System redundancy (intakes and conveyance)
- Regionalization of water systems
- Enhanced water treatment

Adaptive Management – M&I Risk Triggers *Similar to Strong Economy/High Water Stress

Potential Water Supply Options

- New or repurposed surface reservoir
- Alternative reservoir project
- Increased water conservation
- Non-Potable wastewater reuse

- Surface/groundwater conjunctive use
- Indirect Potable wastewater reuse

- New water treatment
- Regionalization of some water systems
- System redundancy: new river intake

Adaptive Management – M&I Risk Triggers *Similar to Weak Economy/Low Water Stress

Potential Water Supply Options

- Explore new options
- Alternative reservoir project
- Stay the course but keep monitoring situation
- Increased water conservation
- Conjunctive use
- New water treatment

Adaptive Management – Agricultural Risk Triggers

Water Supply Options

- Additional storage
- Conveyance
- Conjunctive use of surface water and groundwater
- System efficiency (in the Bootheel with furrow irrigation and transition to high value crops)
- Drainage water recycling
- Meeting demand for expanded food processing operations
- Expanded groundwater use for livestock
- Expanded alluvial groundwater use for additional irrigation
- Surface impoundments for livestock in northwest Missouri
- Cropping System Management

Adaptive Management – Agricultural Risk Triggers *Similar to Substantial Ag Expansion

Potential Options

- Drainage water recycling
- Meeting demand for expanded food processing operations
- Alternative reservoir project
- Expanded groundwater use for livestock
- Surface impoundments for livestock in northwest Missouri
- System efficiency in the Bootheel
- Conjunctive use of surface water and groundwater
- Surface impoundments for livestock in northwest Missouri

Adaptive Management – Agricultural Risk Triggers *Similar to Strong Economy/High Water Stress

Potential Options

- Drainage water recycling
- System
 efficiency (in the
 Bootheel with
 furrow irrigation
 and transition to
 high value crops)
- Alternative reservoir project
- Expanded groundwater use for livestock
- Expanded alluvial groundwater use for additional irrigation
- Surface impoundments for livestock in northwest Missouri

- System efficiency in the Bootheel
- Additional storage
- Conveyance
- Cropping system management
- Surface impoundments for livestock in northwest Missouri

Roles for Adaptive Management

Missouri Department of Natural Resources

- Set Policies
- Update State Water Plan as needed
- Monitor and revise risk triggers

Municipalities, Water Agencies, Local Districts, Ag Users, and private entities

- Identify potential water supply projects
- Implement water supply projects as needed

All

Funding

USACE

- Reservoir Regulation/Management
- Water Studies

Technical Workgroup Update

Next Interagency Task Force Meeting

November 6, 2019

1:00 p.m. to 4:00 p.m.

Lewis and Clark State Office Building, Jefferson City, MO

